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Introduction

Since the advent of recombinant DNA technology, numer-
ous industrial enzymes such as proteases, amylases and 
lipases have been produced by Gram-positive bacteria 
and fungi. Due to many advantages including power-
ful capacity for protein secretion [6, 62, 64, 69, 76], non-
pathogenicity [76, 84], high amenability for genetic engi-
neering and large-scale fermentation [25], Bacillus species 
(especially Bacillus subtilis) have been intensively modi-
fied for the production of pharmaceutical proteins and 
enzymes (Table 1). To date, four distinct routes [25] (the 
Sec pathway, the twin-arginine translocation pathway, 
the ATP-binding cassette transporters and a pseudopilin 
export pathway) for protein export have been character-
ized and documented in B. subtilis. Among them, the larg-
est and most distributed Sec pathway has been intensively 
and deeply studied [17, 64]. In general, the secretion pro-
cess can be divided into three steps: targeting, transloca-
tion and release. Proteins (enzymes) secreted via this path-
way are synthesized as precursors with N-terminal signal 
peptides (SPs). By interacting with many other molecular 
chaperones, SP directs the precursor to be recognized and 
digested by signal peptidase (SPase). Subsequently, the 
mature protein is released into extracellular medium with 
enzymatic function [56]. As a consequence, all the secre-
tory machinery components including SP play crucial roles 
in the process of translocation and secretion.

Although several heterologous enzymes have been suc-
cessfully produced by B. subtilis, the titers of some recom-
binant enzymes are still low to fulfill the requirements of 
practical applications [76]. As a result, it is imperative to 
explore the secretory process and engineer the secretory 
machinery components to improve the secretory efficiency. 
Herein, we describe recent achievements in the exploration 
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and molecular engineering of the secretion machinery 
components. We give particular attention to novel strate-
gies such as SP library construction and high-throughput 
screening (HTS) that applied for increasing the secretion 
capacity. Future perspectives in achieving coordinated bal-
ance between protein expression and secretion are also 
proposed.

Secretory machinery components and its engineering

Structures of SP

SP, a regulatory element that locates at the N-terminus of 
secretory protein is essential for correct targeting to the 
translocation machinery and transportation from cyto-
plasm into growth medium. Although different SPs show 
no conserved amino acid sequence, three distinct regions 
can be summarized (Fig. 1a). Especially in the Sec-type SP, 
the positively charged amino-terminal region (N-region) 
always contains two or three lysine (L) or arginine (R) resi-
dues which are responsible for determining the final orien-
tation of SPs in membrane [64]. The central hydrophobic 
core (H-region), which generally preserves a helix-break-
ing residue glycine or proline at position −4 to −6 rela-
tive to the cleavage site, is believed to adopt an α-helical 
conformation in membrane and is critical for early stages 
in protein export [95]. In parallel, the polar carboxyl termi-
nal region (C-region) which commonly ends with the type 
I SPase recognition sequence Alanine-X-Alanine (AXA) 
is considered to adopt a β-stranded conformation [60, 72]. 
In view of these characteristics, programs such as SignalP 

[55] and LipoP [32] for the prediction of SPs have been 
developed and widely applied.

To date, SPs have been considered to be endowed at 
least three functions. First, SPs should inhibit the folding of 
intracellular nascent chains to retain translocation compe-
tence and avoid the activation of potentially harmful secre-
tory enzymes [11, 77]; Second, SPs should interact with 
other secretion machinery components and direct the trans-
membrane process [12]; Third, SPs should serve as a topo-
logical determinant for proenzymes in the membrane (SPs 
initiate translocation of the polar C-terminal regions of pro-
enzymes while the N-terminal regions of the SP remains 
behind the membrane) [18, 77].

Recently, many studies have confirmed that non-opti-
mal codons enriched at the N-terminus are functionally 
important for protein conformation and activity [9, 22, 65, 
93]. In prokaryotic cells, it has been believed that folding 
of proteins is synchronous with their biosynthesis at the 
ribosomes, and non-optimal codons are often installed at 
the domain boundaries to slow the translation rate [40]. 
This local discontinuous translation enables the nascent 
chains having plenty of time to correctly fold into specific 
domains [86, 97]. In correspondence, many non-optimal 
codons have also been found in the SP regions of a number 
of secretory proteins [65, 91]. Interestingly, Zalucki et al. 
[92, 93] reported that artificial optimization of the natural 
non-optimal codons significantly decreased the secretion 
of maltose-binding protein (MBP) and β-lactamase (Bla). 
The results suggest that usage of non-optimal codons 
slows the rate of translation and facilitates proper fold-
ing of the secreted protein. More recently, Goodman et al. 
[21] further demonstrated that N-terminal rare codons are 
beneficial to reducing RNA structures, which finally lead 
to increased expression of the corresponding genes. As a 
consequence, artificial engineering of SP by introducing 
rare codons might be an attractive approach to improve the 
secretory production of target proteins.

Signal recognition particle

Signal recognition particle (SRP) (Fig. 1b), the ancient 
and highly conserved ribonucleoprotein complex (Fig. 1b), 
is in charge of recognizing the SP sequence of a nascent 
chain and targeting it to the membrane. In B. subtilis, the 
SRP complex is composed of a small cytoplasmic RNA 
(scRNA) [52], two GTPases (Ffh and FlhF) [53, 72, 94] 
and a histone-like protein (HBsu) [53]. In addition to the 
above components, FtsY, the SRP receptor that belongs to 
the widely conserved SRP–GTPase family, is also essen-
tial for transferring the ribosome nascent chain complex 
to the translocation channel [58]. Previously, it has been 
discovered that CsaA (Fig. 1b), which seems to serve as a 
SecB homologue [5], can directly interact with SecA and 

Table 1  Secretory expression of protein products from Bacillus sub-
tilis

Product Signal peptides Titers References

Bacillus subtilis

Proinsulin NprE 1 g/L [59]

Interleukin-3 Lat 100 mg/L [83]

MH-1 SCA Levansucrase 10–15 mg/L [88]

hEGF Staphylococcal 
protein A

7.0 mg/L [44]

α-amylase SacB 2012 U/mL [27]

Cutinase LipA 20 mg/L [7]

Methyl parathion 
hydrolase

NprB 27.1 U/mL [99]

Mannanase amyQ 8.65 U/mL [23]

Lipoxygenase NprB 76 U/mL [96]

Alkaline polygalactu-
ronate

Bpr 620 U/mL [98]

Dextranase ImdA 4.6 g/L [26]

Lipase SacB 356.8 U/mL [47]
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precursor proteins to influence the secretory efficiency [51]. 
In view of this result, Diao et al. [16] recently constructed 
an artificial protein targeting pathway by co-expressing 
SecB (E. coli) and a B. subtilis hybrid SecA (the C-ter-
minal 32 amino acids were replaced by the corresponding 
fragment of SecA from E. coli), and successfully increased 
the secretion of both maltose-binding protein (MalE11) and 
alkaline phosphatase (PhoA) (Table 2). The results sug-
gest that modification of the SRP components is a potential 
novel strategy for improving the secretory capacity of B. 
subtilis and its related species.

Translocase complex

In bacteria, the Sec-translocases (Fig. 1b) are conserved 
and consist of a heterotrimeric protein SecYEG com-
plex (core) [14], SecA (motor) [29, 72], a SecDF–YrbF 
complex [3] and YidC homologues (SpoIIIJ and YqjG) 

[89]. The structure and interaction mechanism of bacte-
rial Sec-translocase and translocation process have been 
well reviewed [14, 17, 56, 90]. In general, the limited 
secretory efficiency is attributed to the insufficient capac-
ity of the transport machinery, especially the transloca-
tion process [10]. To improve the translocation capacity, 
many mutation studies have been performed on the trans-
locator complex to identify the key elements involved 
in protein translocation and secretion [28]. SecA, the 
motor protein, is considered to be a key regulator since 
its ability to directly interact with both the precursors and 
membrane translocases. On this base, Kakeshtia et al. 
[33] successfully enhanced the extracellular production 
of heterologous proteins in B. subtilis by deleting the 
C-terminal region of SecA. The results notably suggest 
that modification of the Sec-translocase components is an 
efficient approach for improving the secretory capacity 
of B. subtilis. In many cases, overexpression of secreted 

Fig. 1  Schematic representation of putative protein secretory 
machinery in B. subtilis. a Tripartite structure of the Sec-type signal 
peptide (SP): a positively charged N-terminal (N), a hydrophobic 
domain (H) and a cleavage domain (C) with specific cleavage site 
(arrow). The boxed P and G mean the helix-breaking residues proline 
and glycine. The numbers represent the positions relative to the cleav-
age site; b The Sec pathway and key regulatory components in B. 
subtilis. Two putative translocation pathways are represented (CsaA-

SecA pathway in dashed black arrows while SRP-SecA pathway in 
solid black arrows). The mRNA was represented in red. The ribo-
some complex was in blue while the nascent peptide was in black. 
The signal recognition particles (SRP), CsaA, FtsY, SecA and signal 
peptidase which interacted the SP are shown in green. The regula-
tory proteins that involved in folding of secretory proteins (PrsA, 
BdbB/C/D) and the degradation of misfolded protein are highlighted 
in brown. The disulfide bonds in active proteins are shown in red
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proteins can cause jamming of membrane because of 
the shortage of translocons. To solve this bottleneck and 
increase the number of translocons, Mulder et al. [50] 
firstly constructed an artificial secYEG operon to opti-
mize their expression and substantially increased the 
secretory production of α-amylase (Table 2). The results 
evidently confirmed that balanced expression of translo-
case components is crucial for efficient translocation and 
secretion.

Signal peptidases

Bacillus subtilis owns two types of SPases for the cleavage 
of substrate proteins [25]. The type I SPases are responsi-
ble for cleaving most classes of secretory proteins while the 
type II SPases are exclusive for lipoproteins [74]. Gener-
ally, five conserved regions are preserved in type I SPases 
from bacteria to human [13, 60, 61]. Unlike E. coli, B. 
subtilis has five chromosomal SPases (SipS, SipT, SipU, 
SipV and SipW) [72]. SipS and SipT are the key SPases 
for protein secretion while others should be required for 
its flexibility and viability [73]. Once the secretory protein 
translocated, the C-region of the transmembrane SP would 
be recognized and quickly deleted by SPase [77]. Recently, 
high-resolution crystal structure of the SPase A from B. 
subtilis not only provides new insights into its function 
mechanism but also promotes its rational engineering [54]. 
In fact, Malten et al. [48] have successfully increased the 
secretory production of recombinant proteins by overex-
pressing the type I SPase in B. megaterium (Table 2).

Regulatory factors

To accomplish efficient secretion and correct folding, 
many molecular chaperones, foldases and quality control 
proteases are preserved in B. subtilis. Research progress 
regarding the intracellular chaperones GroES, GroEL, 
DnaK, DnaJ, GrpE and CsaA and the only extracytoplas-
mic folding factor PrsA have previously been well reviewed 
[18, 46, 68]. In all Gram-positive species, the membrane-
associated lipoprotein PrsA (Fig. 1b) is ubiquitously dis-
tributed with about 20,000 molecules per cell [37, 80]. 
Related experiments in B. subtilis have shown that inactiva-
tion of PrsA resulted in increased rates of degradation and 
loss of enzymatic activity [31, 85] while overproduction 
of PrsA significantly enhanced the secretion of active sub-
tilisin [37], rPA (recombinant protective antigen) [85] and 
α-amylase [79] (Table 2). In this respect, PrsA should be a 
potential engineering target for the secretory production of 
target proteins.

In B. subtilis, four thiol-disulfide oxidoreductases BdbA, 
BdbB, BdbC and BdbD have been identified [4, 49] and 
well reviewed [68]. To increase the formation of disulfide 
bonds in heterologous proteins, up-regulation or modifi-
cation of these thiol-disulfide oxidoreductases should be 
essential since very few disulfide bonds exist in natural 
secretory proteins of B. subtilis. To date, many proteins 
containing disulfide bonds have been successfully pro-
duced in B. subtilis by modulation of thiol-disulfide oxi-
doreductases [38, 39]. In addition, many quality control 
proteases like HtrA, HtrB and CWBP52 (WprA) (Fig. 1b) 

Table 2  Improvement of protein secretion via engineering translocation machinery components

SRP Signal recognition particle, MalE11 maltose-binding protein, PhoA alkaline phosphatase, hIFN-α2b human interferon α, DsrS Dextransu-
crase, rPA recombinant protective antigen, SCNF Single-chain antibody fragment

Components Natural Function Modifications Target proteins References

SRP

 CsaA (SecB) Chaperone for recognition and transportation the new 
nascent polypeptide

Coexpression of SecB and a hybrid 
SecA

MalE11and PhoA [16]

Translocase complex

 SecA Translocation ATPase Deletion of the C-terminal region hIFN-α2b [33]

 seYEG Integral membrane proteins for translocation Expression α-amylase [50]

Signal peptidase

 SipM Signal peptidase Expression DsrS [48]

Regulatory factor

 PrsA Regulatory protein for folding of the new nascent 
polypeptide

Expression Subtilisin [37]

Expression rPA [85]

Expression α-amylase [79]

 BdbD (DsbA) Thiol-disulfide oxidoreductases Modulation of PhoA [38, 39]

 WprA Serine protease for extracytoplasmic quality control Deletion rPA [63]

 GroEL–GroES Chaperones involved in minimizing aggregation of the 
new nascent polypeptide

Expression SCNF [87, 88]
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that regulated by the two-component system CssR–CssS 
have been reported and designated for degradation of mis-
folded or aberrant proteins in B. subtilis [30, 57, 70]. The 
structure and function mechanism of these proteases have 
been well studied [34–36, 42]. In particular, it was discov-
ered that the HtrA family proteins HtrA, HtrB and WprA 
are involved in protein quality control and stress response 
[24, 41]. For this purpose, Pohl et al. [63] investigated the 
B. subtilis mutants with deletion of HtrA, HtrB or WprA 
at proteomic level and found that inactivation of WprA 
improved the production of heterologous proteins. These 
results suggest that regulatory factors involved in protein 
secretion, quality control and stress response are the poten-
tial engineering targets for sensing and indicating the con-
centration of enzymes secreted by B. subtilis.

Novel approaches for identification of SPs 
and construction of its libraries

Prediction and identification of SPs with genomic 
and proteomic approaches

After completing genome sequence of B. subtilis 168 [43], 
all putative SPs were predicted from the annotated B. sub-
tilis proteins in the SubtiList database (http://bioweb.pas-
teur.fr/GenoList/SubtiList) with SignalP algorithm [55, 
72]. Subsequently, functional genomic and proteomic 
approaches were also employed to explore the secretome of 
B. subtilis [1, 71].

In addition to B. subtilis, B. licheniformis as the other 
important Bacillus species has also been extensively 

investigated after its complete genome sequence [67, 78]. 
In 2006, Voigt et al. investigated the extracellular pro-
teome of B. licheniformis under different nutrient starva-
tion conditions [81]. Further comparative analysis results 
showed that B. subtilis possesses less Sec-type SPs com-
pared with B. licheniformis [82]. In addition to B. subtilis 
and B. licheniformis, the extracellular proteomes of other 
Bacillus species including B. cereus and B. anthracis were 
also explored, and many extracellular proteins including 
putative virulence factors were identified [2, 20, 45]. More 
recently, Gohar et al. [19] comparatively studied the extra-
cellular proteomes of B. cereus, B. anthracis and B. thur-
ingiensis, and identified many novel SPs. Meanwhile, the 
results also indicate that the profiles of secreted proteins 
from B. cereus and B. thuringiensis are quite different from 
that of B. anthracis. With the development of genomic and 
proteomic approaches, more potential SPs will be identified 
and applied for secretion of the target proteins.

Construction of SP libraries for optimizing secretory 
expression

To achieve high-level production of the target enzyme, it is 
of utmost importance to choose an appropriate SP regula-
tory element. To this end, Brockmeier et al. [6] developed 
a novel and powerful strategy to optimize heterologous 
protein secretion in B. subtilis. Applying this systematic 
screening approach, all naturally occurring Sec-type SPs 
from B. subtilis were cloned to generate a library (Fig. 2b, 
natural) for HTS of the optimal SP toward the specific pro-
tein (Fig. 2d). Similarly, Degering et al. [15] recently con-
structed a bigger library (173 SPs from B. subtilis and 220 

Fig. 2  Strategies for improving the secretory production of the tar-
get enzyme. a Regulatory elements for the expression and secretion 
of the target gene. RBS, ribosome binding site; b Constructed librar-
ies of promoter, RBS and signal peptide (SP, natural and mutant); c 

Modification of the secretion machinery (SM) components. All the 
SM components could be rationally and simultaneously engineered 
in Bacillus subtilis; d High-throughput screening for the optimal SP 
toward the enzyme of interest

http://bioweb.pasteur.fr/GenoList/SubtiList
http://bioweb.pasteur.fr/GenoList/SubtiList
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SPs from B. licheniformis) for HTS application. Although 
significant differences occur in Sec machineries and SPases 
between B. subtilis and B. licheniformis, majority of the 
homologous proteins from these two closely related strains 
showed comparable secretion levels. As a result, to achieve 
high-level secretion of the target enzyme in other Bacillus 
species, a genetically accessible host strain like B. subti-
lis can be used as a preliminary screening platform [15]. 
Recently, Caspers et al. [8] constructed a mutant library by 
saturation mutagenesis of the N-domain of the AmyE SP 
(Fig. 2b, mutant) and successfully screened several mutant 
SPs for improving the secretion of a heterologous model 
protein cutinase.

In many cases, application of the HTS approach might 
be constrained since not all enzymes can be easily char-
acterized in vitro. Therefore, development of an in vivo 
universal method to directly evaluate the secretion capac-
ity of each SP will be attractive. Accordingly, by analyzing 
the CssRS-mediated secretion stress response, Trip et al. 
[75] developed a novel HTS approach with green fluores-
cent protein as a reporter and realized rapid separation of 
the secreting cells from the non-secreting cells. In addition, 
this work also demonstrated that optimal balance between 
protein biosynthesis and the whole secretion process is 
crucial to the yield and quality of secreted proteins in B. 
subtilis. More recently, our results [98] also confirmed that 
excessive translation rate is adverse to the final production 
of secreted alkaline polygalacturonate lyase. As a result, 
achieving a coordinated balance between biosynthesis and 
secretion with combinatorial strategies (Fig. 2a, b) will be 
fascinating.

Concluding remarks

Although many natural SPs have been successfully charac-
terized and applied to produce heterogeneous enzymes in 
B. subtilis, construction of powerful secretory machinery 
will be the prerequisite for achieving large-scale produc-
tion of target enzymes. To date, many novel engineering 
strategies and powerful tools have been accumulated with 
the development of synthetic biology toward B. subtilis 
[66, 76], which further enable us to coordinate the balance 
between protein expression (including transcription and 
translation) and secretion (Fig. 2a, b). Meanwhile, deep 
understanding of the secretion regulation mechanism will 
also promote rational engineering of the secretory machin-
ery components including SPs (Fig. 2c) toward the enzyme 
of interest.
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